

PUBLIC

Code Assessment

of the Security Council AIP

Smart Contracts

March 18, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Arbitrum Foundation Team,

Thank you for trusting us to help Arbitrum Foundation with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Security Council
AIP according to Scope to support you in forming an opinion on their security risks.

Arbitrum Foundation implements an Arbitrum Improvement Proposal (AIP) that aims to increase the
signature threshold of the non-emergency Security Council multisig on Abitrum One
(0xADd68bCb0f66878aB9D37a447C7b9067C5dfa941) from 7 to 9 signatures. Moreover, a library for
conditional updates of the constitution was implemented.

The most critical subjects covered in our audit are the functional correctness of the proposal and the
correctness of the proposal with regards to lifecycle of a proposal in the arbitrum ecosystem. Security
regarding all the aforementioned subjects is high.

The general subjects covered are access control, testing, documentation and specification. There was no
end-to-end testing for the proposal flow. Security regarding all the rest of the aforementioned subjects is
high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Security Council AIP repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 6 March 2024 1bc50c554192620a4e8b6cb741345ef478d8fc67 Initial Version

2 18 March 2024 d90249166f22be53b4b808007c5a704c87102dac Final Version

For the solidity smart contracts, the compiler version 0.8.16 was chosen.

The following contracts are in scope under the src/gov-actions-contracts/ directory:

• AIPs/SCImprovementAIP/AIPIncreaseNonEmergencySCThresholdAction.sol

• governance/ConstitutionActionLib.sol

• governance/SetSCThresholdAndUpdateConstitutionAction.sol

2.1.1 Excluded from scope
All the contracts not mentioned in scope are considered out of scope. The contracts under review are
going to be executed on Arbitrum One. The difference in the semantics of the EVM opcodes that could
be introduced by the Sequencer is beyond the scope of this audit. The contracts that are used during the
lifecycle of the proposal e.g., L2ArbitrumGovernor, L1ArbitrumTimelock, etc are assumed to function
properly. Issues related to the bridging mechanism used during the propagation of the proposal from
Arbitrum One to Ethereum and vice versa are out of scope. Finally, the multisig is assumed to have been
configured correctly to successfully execute the proposal.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Arbitrum Foundation offers an Arbitrum Improvement Proposal (AIP) as well as an implementing
mechanism to increase the threshold of the non-emergency Security Council from 7/12 to 9/12. As this
AIP changes the Arbitrum DAO constitution, it is considered as a constitutional AIP.

2.2.1 Security Council
Security council supervises a 12-members multisig wallet for non-emergency actions on Arbitrum One. If
considered as routine operational (e.g., routine system upgrades), 7/12 approval suffices. This is
mentioned in the DAO constitution:

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

...Performing any Emergency Action requires a 9-of-12 approval from the Security Council ... The
Security Council may also approve and implement routine software upgrades, routine maintenance
and other parameter adjustments in a non-emergency setting (such actions, "Non-Emergency
Actions"), which require a 7-of-12 approval in order to take effect.

This AIP targets an increase of 7/12 to 9/12 for even non-emergency actions. Hence, it is treated as a
constitutional AIP.

2.2.2 Proposal Lifecycle
Whether an AIP is constitutional or not, the governance process varies. In this report, we focus on the
phases a constitutional AIP goes through.

Phase 1: Temperature check
Any new AIP should firstly be discussed at least one week in the Arbitrum Forum. After at least one
week of discussion, AIP can be moved to an off-chain vote in the snapshot. To create a Snapshot
poll, the author must hold at least 0.01% of the total “votable” tokens. To vote, members must hold or
be delegated the ARB token. After one week, the poll is decided by the majority vote.

Phase 2: Formal AIP
The proposer can submit an on-chain vote. There is a 3-days window between submitting the
proposal and the beginning of the voting.

Phase 3: On-chain DAO vote
By calling L2ArbitrumGovernor.propose(), voting begins and can go on for up to 16 days. For
a constitutional AIP to pass, it should

1. receive more than 5% of all the votable tokens in favor

2. and, a simple majority of the votes in favor.

Phase 4: L2 waiting period
After a proposal is passed, it goes through an additional 3-day waiting period, to allow the affected
parties to react to the proposal e.g., by withdrawing their assets to Ethereum before the proposal
goes into effect. The proposal is enqueued by L2ArbitrumGovernor.queue(), and this function
internally calls schedule() on the ArbitrumTimeLock contract, which queues the message for a
3-days interval.

Phase 5: L2->L1 messaging
After the ArbitrumTimeLock delay has passed, anyone can call execute() on
ArbitrumTimeLock. This function calls the proposal target, which usually is an ArbSys precompile
contract, with the proposal payload set by the proposer. This payload is used later. After the
message lands in the L1 Outbox, anyone can process it. L2->L1 messaging takes a week (challenge
period window), to ensure the challenge period is elapsed and the inserted state root from L2 to L1 is
correct. Executing the message in L1 Outbox calls L1TimeLock.schedule(), which subsequently
adds the message to a queue to be executed later.

Phase 6: L1 waiting period
An extra 3-days of keeping the message on L1, gives this opportunity to any pending transaction on
the L1 to finalize. After this phase, any user can call L1TimeLock.execute(). Depending on the
payload set in the Phase 5, either execution happens in L1 or a retryable ticket is issued in the L1
Inbox with the target being a contract on L2. In our case, this is UpgradeExecutor on Arbitrum
One.

Phase 7: Enforcing the changes
Finally, changes outlined in the AIP are implemented. After the retryable ticket is received in L2, it is
going to be handed over to the UpgradeExecutor. This contract makes a delegatecall to the
perform() function of the proposal. In case of increasing the SC threshold, the following function is
called:

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 6

https://research.arbitrum.io/
https://chainsecurity.com

gnosisSafe.execTransactionFromModule({
 to: address(gnosisSafe),
 value: 0,
 data: abi.encodeWithSelector(_IGnosisSafe.changeThreshold.selector, newThreshold),
 operation: OpEnum.Operation.Call
});

Moreover, the hash of the constitution is updated. The owner of the constitution contract is the
UpgradeExecutor.

2.2.3 Module System of Safe
Even though it is beyond the scope of the review, we include some details regarding the implementation
of the Safe multisig being used. Safe multisigs can specify the so-called modules. These are contracts
that extend the functionality of the multisig. The UpgradeExecutor is such a module.
UpgradeExecutor implements the execute() function which performs a delegate call on a target
specified by its arguments. execute() can only be called by the executor role. L1ArbitrumTimelock
alias on L2 has executor role. The 9 of 12 security council on L2 has also this role.

2.3 Trust Model and Assumptions
UpgradeExecutor.ADMIN_ROLE: admin of UpgradeExecutor can setup roles for other users,
especially EXECUTOR_ROLE. Hence, fully trusted. UpgradeExecutor.EXECUTOR_ROLE: users holding
this role are allowed to call UpgradeExecutor.execute(). These users must be fully trusted,
otherwise, they can misuse the high privilege of calling execute().

We assume that in each proposal:

1. the correct UpgradeExecutor is set and

2. the UpgradeExecutor must be added as a module to the gnosisSafe to accomplish the call
to perform().

The execution of the proposal depends on the liveness of the rollup and its ability to exchange messages
with the L1. We assume that the system can always make progress and that a proposal will eventually be
executed by the rollup no matter the state of the sequencer.

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 1

• Code CorrectedTypo in the Error Message

6.1 Typo in the Error Message
Informational Version 1 Code Corrected

CS-AFSCP-001

To check whether the new constitution was set correctly the following snippet is used:

require(constitution.constitutionHash() == newConstitutionHash, "NEW_CONSTUTION_HASH_SET");

The error message contains a typo. It should be CONSTITUTION instead.

require(
 gnosisSafe.getThreshold() == oldThreshold, "SecSCThresholdAction: WRONG_OLD_THRESHOLD"
);

and

require(
 gnosisSafe.getThreshold() == newThreshold, "SecSCThresholdAction: NEW_THRESHOLD_NOT_SET"
);

misspell the error message "SetSCThresholdAction" as "SecSCThresholdAction".

Code corrected:

Arbitrum Foundation has fixed the typos. The relevant code snippets look as follows:

require(constitution.constitutionHash() == newConstitutionHash, "NEW_CONSTITUTION_HASH_SET");

require(
 gnosisSafe.getThreshold() == oldThreshold, "SetSCThresholdAction: WRONG_OLD_THRESHOLD"
);

and

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

require(
 gnosisSafe.getThreshold() == newThreshold, "SetSCThresholdAction: NEW_THRESHOLD_NOT_SET"
);

Arbitrum Foundation - Security Council AIP - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Security Council
	2.2.2 Proposal Lifecycle
	2.2.3 Module System of Safe

	2.3 Trust Model and Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Typo in the Error Message

